You can always view the Spark configuration (AWS | Azure | GCP) for your cluster by reviewing the cluster details in the workspace.
If you are using DBConnect (AWS | Azure | GCP) you may want to quickly review the current Spark configuration details without switching over to the workspace UI.
This example code shows you how to get the current Spark configuration for your cluster by making a REST API call in DBConnect.
%python import json import requests import base64 with open("/<path-to-dbconnect-config>/.databricks-connect") as readconfig: conf = json.load(readconfig) CLUSTER_ID = conf["cluster_id"] TOKEN = conf["token"] API_URL = conf["host"] headers = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + TOKEN} payload = {'cluster_id': '' + CLUSTER_ID} response = requests.get(API_URL + "/api/2.0/clusters/get/?cluster_id="+CLUSTER_ID, headers=headers, json = payload) sparkconf = response.json()["spark_conf"] for config_key, config_value in sparkconf.items(): print(config_key, config_value)