Problem
You are working with Apache Spark timestamps when you encounter an issue where the nanosecond precision from datetime
columns is not retained. When converting a LongType
column to TimestampType
, the nanosecond precision is lost, leading to inaccurate timestamps.
Cause
Spark does not natively support TimestampType
with nanosecond precision, currently it only supports microsecond precision, which means that directly casting a LongType
column containing nanoseconds to TimeStampType
results in truncation.
Solution
To retain nanosecond precision, you must create a User-Defined Function (UDF) that processes the LongType
column and converts it into a properly formatted string representation of the timestamp, keeping the nanosecond component intact.
Example code (Scala)
- Import the required Libraries:
import java.time.{Instant, ZoneId}
import java.time.format.DateTimeFormatter
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.UserDefinedFunction
- Define the UDF to format the timestamp with nanosecond precision.
val formatInstantWithNanos: UserDefinedFunction = udf((seconds: Long, nanos: Long) => {
val instant = Instant.ofEpochSecond(seconds, nanos)
val formatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss.SSSSSSSSS")
.withZone(ZoneId.of("<timezone-of-your-choice>"))
formatter.format(instant)
})
- Apply the UDF to the DataFrame.
val convertedDF = source_df.withColumn("<formatted-datetime-column>",
formatInstantWithNanos(
col("<column-with-longType>") / 1000000000L, // Seconds part
col("<column-with-longType>") % 1000000000L // Nanoseconds part
)
)
Here, the source_df
represents the original data frame that reads the raw data. The <column-with-longType>
is the column that has the LongType
data from which we want to extract the timestamps with precision up to nanoseconds. Then, we create a new convertedDF
DataFrame with the <formatted-datetime-column>
column, which has the timestamp with nanosecond precision in a StringType
format.
Further downstream operations on the <formatted-datetime-column>
column should be done based on the StringType
operations.
- Use this UDF in Spark when dealing with timestamps stored in
LongType
to ensure that the nanosecond component is preserved. - Instead of converting directly to
TimeStampType
, store the formatted timestamp as a string and modify downstream applications to work with this format. - If further processing is needed, downstream applications can parse the string to retrieve the nanosecond precision timestamp.
Avoid casting to TimestampType
If we convert/cast the StringType
column to a TimestampType
column, the nanosecond precision is lost, as Spark currently doesn’t support precision up to nanoseconds.
If we create a new column <timestamp-col-casted>
and cast the <formatted-datetime-column>
column to a TimestampType
the nanoseconds are lost.
Example code casting to TimestampType
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
var dfWithTimestamp = convertedDF.withColumn("timestamp_col_casted", col("formatted_datetime").cast(TimestampType))
dfWithTimestamp = dfWithTimestamp.select("formatted_datetime","timestamp_col_casted")
dfWithTimestamp.show(false)
Example result casting to TimestampType
The results show that the nanosecond precision is lost in the casted column.
+----------------------------+----------------------------+
|formatted_datetime |timestamp_col_casted |
+----------------------------+----------------------------+
|2017-07-14 08:10:00.123456789|2017-07-14 08:10:00.123456 |
+----------------------------+----------------------------+
dfWithTimestamp: org.apache.spark.sql.DataFrame = [formatted_datetime: string, timestamp_col_casted: timestamp]
dfWithTimestamp: org.apache.spark.sql.DataFrame = [formatted_datetime: string, timestamp_col_casted: timestamp]